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Abstract We present the climate change impact on the annual
and seasonal precipitation over Rajang River Basin (RRB) in
Sarawak by employing a set of models from Coupled Model
Intercomparison Project Phase 5 (CMIP5). Based on the ca-
pability to simulate the historical precipitation, we selected the
three most suitable GCMs (i.e. ACCESS1.0, ACCESS1.3,
and GFDL-ESM2M) and their mean ensemble (B3MMM)
was used to project the future precipitation over the RRB.
Historical (1976–2005) and future (2011–2100) precipitation
ensembles of B3MMMwere used to perturb the stochastically
generated future precipitation over 25 rainfall stations in the
river basin. The B3MMM exhibited a significant increase in
precipitation during 2080s, up to 12 and 8% increase in annual
precipitation over upper and lower RRB, respectively, under
RCP8.5, and up to 7% increase in annual precipitation under
RCP4.5. On the seasonal scale, Mann-Kendal trend test esti-
mated statistically significant positive trend in the future pre-
cipitation during all seasons; except September to November
when we only noted significant positive trend for the lower
RRB under RCP4.5. Overall, at the end of the twenty-first
century, an increase in annual precipitation is noteworthy in

the whole RRB, with 7 and 10% increase in annual precipita-
tion under the RCP4.5 and the RCP8.5, respectively.

Keywords Precipitation projection . Stochastic weather
generator . Quantile perturbation . CMIP5 . Tropical
rainforests . Rajang River Basin . Sarawak . Borneo

1 Introduction

From 1951 to 2010, emission of greenhouse gases (GHG) has
caused a global surface warming ranging from 0.5 to 1.3 °C
(IPCC 2013). Continued emission of GHG will trigger further
atmospheric warming to change the equilibrium of the global
climate system. Climate change impact on various climate
variables, such as precipitation and temperature, is being
assessed by employing general circulation models (GCMs).
Recently, a new generation of GCMs has become available
from Coupled Model Intercomparison Project Phase 5
(CMIP5); these GCMs are being evaluated over the various
regions for climate change’s impact assessment. The CMIP5
models provide a new avenue for modelling climate change
impact by employing four alternative scenarios called repre-
sentative concentration pathways (RCPs) (Venkataraman et al.
2016). Representing model physics, spatial resolution, and the
inclusion of atmospheric aerosols; the CMIP5 models are bet-
ter compared to the Coupled Model Intercomparison Project
Phase 3 (CMIP3) models (Sperber et al. 2012; Taylor et al.
2012); particularly for Asian-Australian monsoon circulation,
the CMIP5 models have been renowned better than the
CMIP3 (Wang et al. 2013).

Several GCMs from CMIP5 are being recommended for
various regions; however, using a single GCM for future pre-
cipitation projection over a river basin would result in mis-
leading the climate change assessment (Tan et al. 2015).
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Therefore, evaluation of a set of CMIP5 models is essential to
explore the suitability of each model for simulating present-
day precipitation and further application for future precipita-
tion projection over a river basin. Recently, few studies, i.e.
McSweeney et al. (2015), Sharmila et al. (2015), and Siew
et al. (2013), have conducted the evaluation of CMIP5 models
over South Asia and South East Asia (SEA) as described in
Table 1. Each of these studies recommended a couple of
GCMs for climate change’s impact assessment for these
regions.

Tropical rainforests are generally located at latitudes within
10° north and south of the equator. Dominated by the
intertropical convergence zone (ITCZ), the climate of
tropical rainforests is typically hot and wet throughout the
year. These regions do not have the summer or winter, and
precipitation in the form of rainfall is heavy and frequent
throughout the year. The tropical rainforests are the most
commonly found in SEA, Central Africa, and South
America. The Rajang River Basin (RRB) of Sarawak covers
major tropical rainforests of the SEA. In the context of the
climate change impact on future precipitation, Sarawak

attracted little attention in the past researches. Kumagai et al.
(2004) projected precipitation over Lambir Hills National
Park in Sarawak using HadCM3 and found drier DJF, little
change in MAM, wetter JJA, and SON during 2080s com-
pared to the baseline period of 1968–2001. Amin et al. (2016)
assessed the climate change impact on water resources in
Sarawak and Sabah using two GCMs from the CMIP3 and
revealed that climate change would have uneven effect over
this region due to complex and steep regional topography. Loh
et al. (2016) simulated future precipitation over Malaysia for
2071–2099 using PRECIS modelling system and found that
HadCM3Q0/PRECIS produces slightly wetter condition com-
pared with the APHRODITE data (1966–1990) especially
over central Borneo and northeastern Peninsular Malaysia.
Hussain et al. (2017a) assessed the climate change resilience
of Batang Ai reservoir in western Sarawak using five GCMs
from CMIP5 and revealed the seasonal shift of precipitation
over the study area. Another recent study by (Hussain et al.
2017b) projected the future changes in precipitation at three
stations in Sarawak, i.e. Kuching, Bintulu, and Limbang; they
also noted a seasonal shift in future precipitation with decrease

Table 1 Summary of recent studies conducted for evaluation of CMIP5 models over South and South East Asian region

Study Evaluation
variable

No. of
CMIP5
models
evaluated

Study area Recommended
models

Key results

(Siew
et al. 2013)

Winter monsoon 10 SEA CNRM-CM5
IPSL-CM5A-MR
NorESM1-M

All GCMs simulated the spatial pattern of winter
monsoon rainfall but with a large spread of wet
bias magnitude over the SEA. Three most skilful
models based on simulating present day winter
monsoon over SEA are selected for future
projection.

(McSweeney
et al. 2015)

Precipitation and
temperature

40 SEA HadGEM2-ES
ACCESS1-0
ACCESS1-3
BCC-CSM1-1-m
BNU-ESM
CanESM2
CMCC-CM CCSM4
CNRM-CM5
GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M
IPSL-CM5A-MR
MPI-ESM-MR

14 out of 40 models are declared as the satisfactory
for future projection of precipitation and
temperature
over SEA.

(Sharmila
et al. 2015)

Summer
monsoon

20 Indian
sub-continent

BNU-ESM
MIROC5
MPI–ESM–LR
NorESM1–M

Out of 20 GCMs, four models reproduced Indian
summer monsoon variability.

This study Precipitation 20 Central Sarawak
(Borneo
Island)

ACCESS1.0
ACCESS1.3
GFDL-ESM2M

Most out of 20 models were unable to simulate
intra-annual variability in term of monthly
precipitation. Three selected models followed
the variation of observed monthly precipitation
over the Central Sarawak and their mean ensemble
is used for future precipitation projection over
RRB.
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in precipitation during December to February and increase in
precipitation during the June to August.

Numerous studies have developed climate change scenari-
os for precipitation projection in various Asian regions using
different downscaling techniques for transforming observed
climate data into likely future scenarios (Chu et al. 2010;
Hasan et al. 2017; Hassan et al. 2014; Hasson et al. 2016;
Juneng et al. 2016; Loh et al. 2016; Mahmood and Babel
2012). Weather generators (WGs) are being used to generate
multiple years’ climate change scenarios on the daily time
scale, i.e. Forsythe et al. (2014), Jones et al. (2011), Kilsby
et al. (2007), Semenov and Barrow (2002), Semenov and
Barrow (1997), Semenov et al. (1998), and Wilks (2010).
Several WGs have been developed for generation of time
series for climate variable, i.e. WGEN (Richardson 1981;
Richardson and Wright 1984), USCLIMATE (Hanson et al.
1994), CLIGEN (Nicks et al. 1995), ClimGen (Stockle et al.
1999), and LARS-WG (Semenov and Barrow 2002). These
WGs perform well for preserving the total amount of precip-
itation; however, most of them underestimate the monthly and
interannual variance of precipitation (Buishand 1978; Chen
et al. 2009; Gregory et al. 1993; Hansen and Mavromatis
2001; Johnson et al. 1996; Katz and Parlange 1993; Wilks
1989; Wilks 1999; Zhang and Garbrecht 2003).

Chen et al. (2010) developed a WG known as WeaGETS
addressing the low frequency variability (LFV) in generated
precipitation and temperature. It has been evaluated for pre-
cipitation generation in sub-arctic climate of Canada (i.e.
Chen et al. 2010) and semi-arid climate of China (i.e. Chen
and Brissette 2014); where it successfully generated the vari-
ability in monthly, seasonal, and annual precipitation.
However, WeaGETS has not been evaluated yet for precipita-
tion generation over tropical regions, i.e. tropical rainforest in
SEAwhere the issue of LFV in monthly and seasonal precip-
itation is of high concern. Therefore, this study assessed the
capability of WeaGETS for generating precipitation over the
Bornean tropical rainforests, i.e. RRB in Sarawak.

Recently, ensemble techniques such as change factor ap-
proaches have also received increased attention for climate
change’s impact assessment, i.e. Fowler and Ekström
(2009), Knutti et al. (2010), Ntegeka et al. (2014), and
Teutschbein and Seibert (2010). Due to high uncertainties in-
volved with climate model parameters, ensemble techniques
are being preferred (Collins 2007). However, traditional
change factor approach in ensemble technique only changes
the mean value and disregards several statistical factors such
as frequency, temporal sequencing, and variability. Therefore,
alternative approaches such as quantile scaling, mapping, and
perturbation have been proposed (Chiew et al. 2009; Ntegeka
et al. 2014; Olsson et al. 2009). These techniques perturb
precipitation intensities with percentile-based factor calculat-
ed from the control and future precipitation ensembles. These
approaches are also suitable for the regions receiving

increased variability in precipitation events (Ntegeka et al.
2014), i.e. tropical rainforests where heavy precipitation
events increase at higher rates compared to mild events.

In this study, we evaluated 20 GCMs from CMIP5 for their
capability to simulate historical precipitation over the RRB
and presented projected changes in future precipitation over
the RRB. Therefore, the objectives of this study were the
following: (i) to evaluate the fidelity of 20 GCMs in simulat-
ing the monthly precipitation variability over the RRB under
present day climate (1976–2005), (ii) performance evaluation
of WeaGETS for simulating monthly precipitation over the
RRB, and (iii) to investigate the potential change in future
precipitation over the RRB illuminating the emerging role of
increased GHG emission for changing precipitation over the
Bornean tropical rainforests.

2 Study area and data description

2.1 Study area

The RRB is the largest river basin in the Sarawak state of
Malaysia located on the Borneo Island (Fig. 1)—which is
the largest island in Asia and third largest island in the world.
The RRB has the total catchment area of about 50,000 km2

and covers 40% of the Sarawak’s tropical rainforests. The
precipitation in the form of rainfall is abundant in the RRB
with average annual rainfall ranging from 3000 to 5200 mm
over the river basin. The catchment elevations vary from sea
level at the west coast to 2016 m above sea level in the upper
part of the RRB. Rajang River is also the longest river in
Malaysia; with a total length of 563 km, it is also the largest
source of fresh water inMalaysia. The Rajang River originates
from the Iran Mountains, a range of mountains on the border
between Malaysia and Indonesia, and drains to the South
China Sea.

The region has two monsoon seasons, the northeast mon-
soon (October to March) and the southwest monsoon (May to
September); the northeast monsoon brings more precipitation
in the RRB compared to the southwest monsoon. The months
of December to February are considered the wettest months of
the year and June to August are the lowest precipitation
months. In this study, annual precipitation cycle was divided
into four quarters—December to February (DJF), March to
May (MAM), June to August (JJA), and September to
November (SON).

2.2 Data used

2.2.1 Historical precipitation data

Historical daily precipitation for 36 rainfall stations (as shown
in Fig. 1) was obtained from the Department of Irrigation and
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Drainage, Sarawak for a period of 1976–2005. Out of these
rainfall stations, 25 stations are located in the RRB and 11
stations in the neighbour river basins.

2.2.2 CMIP5 models and experiment

During evaluation of GCMs, daily precipitation ensembles of
20 GCMs from CMIP5 (as listed in Table 2) were used for
their historical simulations (1976–2005). The historical simu-
lations are based on the observed climate forcing; initial con-
ditions of historical simulations are based on fixed pre-
industrial forcing (Sharmila et al. 2015). The SEA is one of
the most vulnerable regions to the climate change and it has
already witnessed the increased intensity of storms such as
Typhoon Haiyan in the Philippines during November 2013.
Raitzer et al. (2015) stated that five of the Southeast Asian
countries, i.e. Indonesia, Malaysia, the Philippines, Thailand,
and Vietnam, contribute 90% of the regional GHG emission
and would face significant reduction in their GDP by 2100.
Indonesia and Malaysia have the largest land use area covered

with forest and continued deforestation in these two countries
contributes to the most of the regional GHG emission; there-
fore, the region is one of the most vulnerable regions to cli-
mate changes. The RCP4.5 is a moderate climate scenario in
which the total radiative forcing will be stabilised to 4.5Wm−2

in the year 2100. The RCP 8.5 (strongest scenario) runs are
forced with relatively high anthropogenic GHG emissions;
under RCP8.5, the radiative forcing will increase and then
stabilise at about 8.5 Wm−2 after 2100. Initial conditions for
the RCP4.5 and the RCP8.5 start from the end of the historical
runs. Two of the selected models during the evaluation (i.e.
ACCESS10 and ACCESS13) only provide the future projec-
tion under RCP4.5 and RCP8.5. Therefore, to assess the future
changes in precipitation, we presented the RCP4.5 and
RCP8.5 projection over the RRB. The ensemble member
(r1i1p1) for future run (2011–2100) of each selected model
run was used in this study; same ensemble member was
adopted by Kitoh et al. (2013) and Sharmila et al. (2015).
The historical and future precipitation ensembles were
downloaded from the IPCC Data Distribution Center (IPCC-

Fig. 1 Location of RRB in Borneo Island, selected rainfall stations, rivers network, elevations, and historical average annual precipitation in RRB
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DDC) website (http://www.ipcc-data.org/sim/gcm_monthly/
AR5/Reference-Archive.html) in the netCDF data format for
the whole globe (latitude 90° N to 90° S and longitude 180°W
to 180° E).

3 Methodology

3.1 Evaluation of CMIP5 models

All of the 20 selected GCMs have different spatial resolutions
varies between (1.12° × 1.12°) and (2.8° × 2.8°) as shown in
Table 2. Therefore, all GCMs were regridded into the same
grid size of (2.0° × 2.0°) through bilinear interpolation to
minimise the effect of spatial resolution on our comparison.
The main reasons for regridding all GCMs at (2.0° × 2.0°) are
to bring the grids to the average grid size of the selected
GCMs and to provide opportunity to use maximum rainfall
stations in the grid for evaluation. The Grid Analysis and
Display System (GrADS) developed by Doty (1995) was
utilised to re-grid all 20 GCMs.

The study area lies in the two grids, i.e. Grid-A and Grid-B as
shown in Fig. 1. Grid-A covers the high altitudes, mid-land, and
coastal areas, whereas Grid-B mostly covers the higher altitudes
only. Grid-A also has the continuous record of precipitation data
without any longermissing period and also has higher density of
rainfall stations (i.e. 21 rainfall stations) compared to Grid-B.
Therefore, Grid-Awas selected for GCM evaluation during their
historical run. The observed monthly precipitation at all rainfall
stations in the Grid-A was averaged over the grid using the
Thiessen polygons method. In terms of their precipitation mech-
anism, all of the stations in Grid-A have the same precipitation
pattern as shown in Fig. 2, where DJF are the wettest months
and JJA are the driest months compared to the rest.

All of the precipitation ensembles from the 20 GCMs were
evaluated with the observed precipitation using the following
statistical indicators—correlation coefficient (R), normalised
standard deviation (NSD), root mean square error (RMSE),
and mean absolute error (MAE). The optimistic evaluation
criteria of greater value of R and NSD closer to unity are
designed by Taylor (2001) and being used by various recent
studies, i.e. Hassan et al. (2015), Sarthi et al. (2015), and
Sharmila et al. (2015). In addition to these two statistical

Table 2 Basic information of CMIP5 models selected for evaluation over the study area

Modelling center
acronym

Modelling center expansion Model name Horizontal
resolution (lon × lat)

Identifier

CSIRO-BOM Commonwealth Scientific and Industrial Research
Organization (CSIRO) and Bureau of Meteorology,
(BOM), Australia

ACCESS1.0 1.875° × 1.25° 1

ACCESS1.3 1.875° × 1.25° 2

BCC Beijing Climate Centre, China Meteorological
Administration, China

BCC-CSM1.1 2.8° × 2.8° 3

BCC-CSM1.1 m 2.8° × 2.8° 4

BNU College of Global Change and Earth System Science,
Beijing Normal University, China

BNU-ESM 2.8° × 2.8° 5

CCCma Canadian Centre for Climate Modelling and Analysis,
Canada

CanESM2 2.8° × 2.8° 6

CSIRO-QCCCE Commonwealth Scientific and Industrial Research
Organization in collaboration with the Queensland

Climate Change Centre of Excellence, Australia

CSIRO-Mk3.6.0 1.875° × 1.865° 7

NOAA-GFDL Geophysical Fluid Dynamics Laboratory, USA GFDL-CM3 2.5° × 2.0° 8

GFDL-ESM2G 2.0° × 2.0° 9

GFDL-ESM2M 2.5° × 2.0° 10

NIMR, KMA National Institute of Meteorological Research, Korea
Meteorological Administration, South Korea

HadGEM2-AO 1.875° × 1.25° 11

MOHC Met Office Hadley Centre, UK HadGEM2-ES 1.875° × 1.25° 12

INM Institute for Numerical Mathematics, Russia INMCM4 2.0° × 1.5° 13

IPSL Institut Pierre-Simon Laplace, France IPSL-CM5A-MR 2.5° × 1.267° 14

MIROC Atmosphere and Ocean Research Institute
(The University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology, Japan

MIROC5 1.4° × 1.4° 15

MIROC-ESM-CHEM 2.8° × 2.8° 16

MPI-M Max Planck Institute for Meteorology (MPI-M),
Germany

MPI-ESM-LR 1.875° × 1.865° 17

MPI-ESM-MR 1.875° × 1.865° 18

MRI Meteorological Research Institute, Japan MRI-CGCM3 1.12° × 1.12° 19

NCC, NMI Norwegian Climate Centre, Norway NorESM1-M 2.5° × 1.9° 20
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indicators, we also analysed the RMSE andMAE to assess the
capability of all GCMs for simulating monthly precipitation
over the study area. We defined the criteria to select the
highest ranked models for the study area as shown in Table 3.

3.2 Precipitation generation using WeaGETS

In this study, WeaGETS was used to simulate the future pre-
cipitation at the 25 rainfall stations in the RRB.WeaGETS is a
Matlab based stochastic WG; it has the options to employ the
first-, second-, and third-order Markov chain model for the
precipitation occurrence and gamma and exponential distribu-
tion for generation of precipitation amount during the wet
days. Several studies concluded that higher-order Markov
chain models provide in-depth insights of precipitation phe-
nomenon compared to the first-order Markov chain, i.e. Chen
and Brissette (2014), Islam and Chowdhury (2006),
Stephenson et al. (1999), and Veldkamp et al. (2016). The
gamma distribution has been successfully used to model the
distribution of wet-day precipitation amounts in several stud-
ies such as Chen et al. (2010), Groisman et al. (2005),
Semenov and Bengtsson (2002), Watterson and Dix (2003),
and Wilby and Wigley (2002). Therefore, third-order Markov
chain model was adopted for the simulation of precipitation
occurrence and gamma distribution for the generation of pre-
cipitation amount at all rainfall stations in the RRB.

LFV in generated daily precipitation was corrected at the
monthly and annual scales taking into account the power spectra
of observed precipitation at the same scale. The power spectra
were computed by fast Fourier transformation; the detailedmeth-
odology for the LFV correction in WeaGETS is described in
Chen et al. (2010). Time series data for observed precipitation
(1976–2005) at all 25 rainfall stations was used in theWeaGETS
to generate the 120-year precipitation time series. The perfor-
mance of model for generating the future precipitation was
assessed using three statistical indicators, i.e. Nash–Sutcliffe
model efficiency (NSE), mass balance error (MBE), and

RMSE. The NSE is a normalised statistic that provides the rela-
tive degree of the residual variance compared to the observed
variance (Nash and Sutcliffe 1970), and it is calculated as:

NSE ¼ 1−
∑n

i¼1 Pobs;i−Pgen;i

� �2

∑n
i¼1 Pobs;i−Pobs

� �2 ð1Þ

where Pobs, i is the ith observed precipitation, Pgen, i is the ith
generated precipitation, Pobs is the mean of the observed precip-
itation, and n is the total number of observations. The value of
NSE equal to 1 indicates the perfect match between the observed
and generated precipitation.

The MBE is another performance indicator for the gener-
ated precipitation; it shows capability of the model to generate
the total amount of precipitation and is calculated as:

MBE ¼ ∑n
i¼1Pgen;i−∑n

i¼1Pobs;i

∑n
i¼1Pobs;i

ð2Þ

The MBE of zero indicates the perfect agreement between
the observed and generated precipitation.

The RMSE is also one of the frequently used statistical
error index for generated and observed data (Campozano
et al. 2016; Kum et al. 2014; Mahmood and Babel 2012)
and is calculated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Pobs;i−Pgen;i

� �2

n

s

ð3Þ

RMSE of zero indicates the perfect agreement between the
observed and generated precipitation.

3.3 Quantile-based precipitation perturbation
under future scenarios

To explore the climate change impact on precipitation vari-
ability over the RRB, stochastically generated precipitation at
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Fig. 2 Seasonal precipitation (1976–2005) over 21 rainfall stations in Grid-A
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all stations was perturbed by quantile-based perturbation ap-
proach. For this purpose, we used the control run (1976–2005)
and future runs (2011–2100) of best three models’ mean en-
semble (B3MMM) to derive the quantiles factors. The reason
to perturb the stochastically generated future precipitation
time series is to minimise the biases which would be intro-
duced byWG if we perturb the observed precipitation prior to
use in WG. Using a synthetic time series of precipitation for
perturbation also provides an additional opportunity to ex-
plore the interannual and seasonal variability compared to
the simply perturbing the historical 30-year observed time
series (Forsythe et al. 2014).

The generated time series at each rainfall station for the
period of 2011–2040 (2020s), 2041–2070 (2050s), and
2071–2100 (2080s) were separately perturbed in two steps.
In the first step, wet-day frequency perturbation was applied
to 30-year time series and then perturbation for wet-day inten-
sity quantile was done. Wet-day frequency perturbation was
calculated from the B3MMM ensemble as the ratio of the
number of wet days in a given month during the future sce-
nario period (i.e. 2080’s) to the number of wet days during the
corresponding month in the control period (1976–2005). This
calculated perturbation was applied to the stochastically gen-
erated future precipitation time series at all stations for the

same future period (i.e. 2080’s) as used for the B3MMM. In
the second step, the wet-day quantile perturbation was calculat-
ed based on wet-day quantiles in the control period (1976–
2005) of the B3MMM to the wet-day quantiles in the scenario
period (i.e. 2080’s) of the B3MMM.As the number of wet days
varies in the control and scenario period, therefore, the wet-day
intensity perturbation was calculated as the ratio of control and
scenario quantiles having same exceedance probability. Then,
this perturbation was applied to the same quantiles in the sto-
chastically generated future precipitation for the same period
(i.e. 2080s). The precipitation perturbation process adopted in
this study is the same as used by Ntegeka et al. (2014).

3.4 Trend analysis

Trend analysis is commonly used for the climate change im-
pact studies, i.e. Chattopadhyay and Edwards (2016),
Groisman et al. (2005), and Timbal (2004). Recently, Mann-
Kendall’s trend test is being used for the precipitation trend
analysis such as Chattopadhyay and Edwards (2016) and
Feng et al. (2016). To identify the significance in the data at
stations having large magnitude of the changes, the Mann
Kendall (MK) trend test is the most appropriate statistical
analysis (Hirsch et al. 1982). The purpose of the MK test is

Table 3 Performance of CMIP5 models over the Grid-A; selected models are as highlighted

CMIP5 Model

R NSD RMSE MAE Rank

(out of 4)R > 0.4 0.7 > NSD > 1.3 RMSE < 135 MAE < 70

ACCESS1.0 0.45 1.24 116 43 4

ACCESS1.3 0.41 1.29 133 61 4

BCC-CSM1.1 0.07 1.79 184 41 1

BCC-CSM1.1m 0.25 1.12 188 147 1

BNU-ESM 0.08 0.85 142 86 1

CanESM2 0.29 0.73 173 145 1

CSIRO-MK3.6.0 0.14 1.78 175 34 1

GFDL-CM3 0.21 1.56 167 74 0

GFDL-ESM2G 0.16 1.74 168 14 1

GFDL-ESM2M 0.54 1.27 127 67 4

HadGem2-AO 0.36 1.48 140 69 1

HadGem2-ES 0.20 0.79 155 116 1

INMCM4 -0.01 0.81 156 105 1

IPSL-CM5A-MR 0.02 1.92 196 33 1

MIROC-ESM-CHEM 0.02 0.46 120 69 2

MIROC5 -0.01 0.98 152 84 1

MPI-ESM-LR -0.26 1.09 181 102 1

MPI-ESM-MR -0.18 1.26 190 107 1

MRI-CGCM3 0.19 1.64 164 47 1

NorESM1-M 0.30 1.20 158 105 1
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to assess the monotonic trend upward (downward) of a vari-
able over a time; it illustrates that the variable increases or
decreases consistently through the time (Gilbert 1987;
Kendall 1975; Mann 1945). MK test assumes that there is
no trend in data as the null hypothesis (H0) and it is tested
against the alternate hypothesis (H1), which assumes that there
is a trend. For a precipitation time series of n values where P is
the precipitation at time T, assuming a pair (Pi, Ti and Pj, Tj)
where 1 ≤ I ≤ j ≤ n. If the Pi–Pj and Ti–Tj have the same sign,
then it is called concordant pair; otherwise, it is called discor-
dant pair and if the difference is zero, then the pair is called
tied. The Kendall’s τ is calculated as:

Kendall
0
s τ ¼ nc−ndffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n−1ð Þ=2−∑ti ti−1ð Þ=2½ � � n n−1ð Þ=2−∑ui ui−1ð Þ=2½ �p

ð4Þ
where nc is the number of concordant pair and and nd is the
number of discordant pairs; ti is the number of tied value for a
specific rank of precipitation and ui is the number of tied
values for time period.

We performed the Mann-Kendall trend test to estimate the
trend in annual and seasonal precipitation in the RRB for the
historical period of 1976–2005 and future period of 2011–
2100 under both RCPs. The results are discussed in Sect. 4.4.

4 Results and discussion

4.1 Evaluation of GCMs

Using the defined criteria described in Sect. 3.1, three models
with highest rank were selected as the most suitable models

for future precipitation projection over the RRB. Among all
20 GCMs, ACCESS1.0, ACCESS13, and GFDL-ESM2M
were ranked highest during the evaluation process. Most of
the models were unable to simulate monthly precipitation dur-
ing control run of 1976–2005; Fig. 3 shows the time series
plot of the monthly precipitation simulated by all GCMs com-
pared with the monthly observed precipitation over the Grid-
A. On the other hand, the selected three models followed the
variation of observed precipitation reasonably. The B3MMM
was also compared with the observed monthly precipitation
(Fig. 3) and it followed the pattern of observed precipitation
well; Therefore, B3MMM was selected to explore future
changes in precipitation over the RRB. The other two models
HadGem2-AO and NorESM1-M have the higher correlation
compared to the rest of unselected GCMs but did not performed
well for the other statistical indicators (Table 3) and therefore not
considered for the future precipitation projection over the RRB.

McSweeney et al. (2015) conducted an evaluation of
CMIP5 models over the SEA; out of 40 GCMs, 14 GCMs
were declared satisfactory for their capability to simulate the
observed climate of SEA (as listed in Table 1). After the
screening, McSweeney et al. (2015) tested the selected 14
GCMs for their performance over the Singapore and noted that
four out of 14 shortlisted GCMs were unable to reproduce the
observed climate over the Singapore; therefore, they selected
ten GCMs for future projection of precipitation and tempera-
ture over the Singapore. In this study, the three highest ranked
models, i.e. ACCESS1.0, ACCESS1.3 and GFDL-ESM2M,
are among the 14 models selected by McSweeney et al.
(2015). However, most of the other models that performed
satisfactory overall for the SEA (McSweeney et al. 2015) do
not reproduce observed precipitation realistically over the
Central Sarawak. Therefore, ACCESS1.0, ACCESS1.3, and
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Fig. 3 Monthly precipitation (mm/month) over Grid-A for the period of 1976–2005, comparison of observed monthly precipitation with simulated
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GFDL-ESM2M were selected to develop the multi-model
mean ensemble of B3MMM. Another recent study by
Raghavan et al. (2017) also assessed the 10 GCMs (excluding
ACCESS1.0, ACCESS1.3, and GFDL-ESM2M) from CMIP5
for their capability to simulate precipitation over SEA. It is
noted that most of the models unable to reproduce the observed
climate of the SEA; multi-model mean ensemble of all ten
models represented the better results for the observed climate
but uncertainties with the individual models are very high.
Therefore, whilst using the multi-model mean ensemble for
future climate projection, special care should be taken for se-
lection of high-performing models and elimination of the low-
performing model. In this study, we screened 20 GCMs for
their capability to simulate the observed precipitation over
Central Sarawak and adopted mean ensemble (B3MMM) of
three highest ranked models for future projection of precipita-
tion over the RRB. The B3MMM also reproduced the ob-
served precipitation more realistically compared to the individ-
ual models as shown in Fig. 3.

4.2 Validation of WeaGETS

Using 30-year observed daily precipitation in WeaGETS,
120-year daily precipitation time series were generated at
all rainfall stations in the RRB. WeaGETS capability for
precipitation generation was assessed using three statistical
indicators, i.e. RMSE, NSE and MBE. The model success-
fully generated the monthly precipitation as the NSE at all
stations was greater than 80%, MBE of less than 1%, and
RMSE ranging from 104 to 164 mm per month as shown in
Table 4.

The mean monthly generated precipitation was com-
pared with observed precipitation to assess the WeaGETS
capability to preserve the LFV in the generated precipitation
(Fig. 4). The spectral correction approach used for the LFV
correction performed well as it reproduced the mean precip-
itation for all of the months accurately, which also indicate
that the model was capable of reproducing the precipitation
pattern over the RRB.

Compared to another study in Malaysia by Hassan et al.
(2014), our results indicate that the model successfully gener-
ated the mean monthly precipitation over the selected rainfall
stations as given in Table 4. Hassan et al. (2014) used the
SDSM and LARS-WG to generate precipitation over three
location in Peninsular Malaysia and found that SDSM
overestimated the mean monthly precipitation especially at
the stations in the central and southern part of Peninsular
Malaysia during the model validation, whilst LAR-WG un-
der-estimated the monthly precipitation in the central station
in Peninsular Malaysia. In this study, WeaGETS showed the
consistent performance for precipitation generation at all rain-
fall stations in the upper and lower RRB and therefore, it

provides sensible projection of annual and seasonal precipita-
tion over the RRB.

We also plotted the double mass curves for daily ob-
served precipitation against the generated precipitation;
WeaGETS reproduced the precipitation amount accurately
over the 30-year period as shown in Fig. 5. The model
slightly under-/over-estimated the precipitation in the mid-
dle period at two stations, i.e. Long Laku and Sibu, but
overall WeaGETS reproduced the same amount of precipi-
tation over the 30-year period, which provide further confi-
dence on the approach used for the precipitation projected
over the RRB as we compared the 30-year period for our
assessment.

4.3 Future precipitation projection

4.3.1 Variation in mean annual precipitation

To assess potential impact of the climate change on precipita-
tion, we analysed future projected precipitation for three fu-
ture periods, i.e. 2020s, 2050s, and 2080s. The mean annual
projected precipitation under B3MMMat all of the stations for
three future periods was compared with the mean annual ob-
served precipitation (1976–2006) as given in Table 5 and
shown in Fig. 6. The kriging (Gaussian process regression)
method in Arc GIS tool was used to interpolate and exhibit the
point precipitation at all 25 rainfall stations into the basin

Table 4 Performance of WeaGETS for generating precipitation over
RRB. 120-year generated monthly precipitation was compared with the
observed monthly precipitation (1976–2005) at six rainfall stations

Station Monthly rainfall NSE MBE RMSE
mm % % mm/month

(a) Nanga Busang

Observed 344.6

Generated 343.8 84 0.20 147

(b) Nanga Entawau

Observed 384.1

Generated 385.4 84 0.35 164

(c) Long Laku

Observed 327.5

Generated 328.3 82 0.24 151

(d) Matu

Observed 282.0

Generated 283.1 84 0.40 131

(e) Sibu

Observed 267.2

Generated 267.9 81 0.28 126

(f) Song

Observed 280.5

Generated 280.6 88 0.04 104
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precipitation (i.e. Fig. 6). It was projected that the upper RRB
would have 3, 3, and 7% increase in precipitation during
2020s, 2050s, and 2080s, respectively, under RCP4.5. Under
RCP8.5, upper RRB would have 6, 7, and 12% increase in
annual precipitation during the 2020s, 2050s, and 2080s, re-
spectively. For the lower RRB, it is projected to have 1%
decrease during 2020s and 4 and 7% increase during 2050s
and 2080s under RCP4.5. And under RCP8.5, it is projected
to have 4, 5, and 8% increase in annual precipitation during
2020s, 2050s, and 2080s, respectively. Overall, there is an
increasing trend in the mean annual precipitation in the future.
We applied the trend analysis to assess the significance in the

historical and future annual precipitation and it is discussed in
Sect. 4.4.

4.3.2 Intra-annual variability in future precipitation

Seasonal change in precipitation were assessed for the future
periods of 2020s, 2050s, and 2080s under both RCPs as
shown in Figs. 7, 8, 9, and 10. DJF is the wettest season in
RRB as shown in Fig. 2; during DJF, it is projected that the
RRB would have higher increase in precipitation under
RCP8.5 compared to RCP4.5. But during 2020s, upper RRB
is projected to receive higher DJF precipitation under RCP4.5

Fig. 4 Comparison of monthly observed precipitation (1976–2005) vs. WeaGETS generated precipitation at six rainfall stations in RRB

Fig. 5 Double mass plot for daily observed precipitation (1976–2005) vs. WeaGETS generated precipitation at six rainfall stations in the RRB
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compared to 2050s and 2080s. Under RCP8.5, it is projected to
receive 11 and 8% increase in DJF precipitation in the upper and
lowerRRB, respectivly. Overall, this season is expecting increase
in future precipitation under RCP8.5 as shown in Fig. 7. The

MAM is the periodwhen RRB receives the average precipitation
and it is noted that this season is projected to have increase in
future precipitation (Fig. 8) under both scenarios during all future
periods except RCP4.5 of the 2020s when it is expected to

Table 5 Percentage (%) changes
in mean annual and seasonal
precipitation over RRB under
RCP4.5 and RCP8.5 of
B3MMM, comparison of future
periods with the baseline period
of 1976–2005

Sub-basin RCP4.5 RCP8.5

Annual DJF MAM JJA SON Annual DJF MAM JJA SON

Upper RRB

2020s 3 9 0 3 1 6 6 10 7 2

2050s 3 2 8 4 − 1 7 6 9 14 0

2080s 7 1 11 15 2 12 11 18 16 5

Lower RRB

2020s − 1 − 3 1 0 − 1 4 3 9 4 − 1

2050s 4 4 6 6 − 2 5 3 8 15 − 2

2080s 7 4 7 16 3 8 8 11 13 0
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be same as of historical period (as stated in Table 5). During
2080s, it is expected to have 18 and 11% increases in MAM
precipitation in the upper and lower RRB, respectively, under
RCP8.5, which indicate that this season would be getting wetter
in future under RCP8.5.

The JJA is the driest season in the RRB and receives the
lowest precipitation over the river basin; it is projected to have
increase in precipitation in future under both of the RCPs
(Fig. 9). However, during the 2020s, the lower RRB would
be stabilised under RCP4.5. During 2080s, the JJA precipita-
tion is projected to increase significantly under RCP8.5, i.e. by
16% increase in the upper RRB and 13% increase in lower
RRB. The SON is wetter season in the RRB and this seasonal
is projected to be most stable in the future (Fig. 10), whilst it is
expected to have up to 5% increase in SON precipitation in the
upper RRB during 2080s. We also performed the Mann-

Kendall test to assess the significance on seasonal trend in
the precipitation and discussed in Sect. 4.4.

4.3.3 Changes in extreme monthly precipitation

We assessed the change in extreme monthly precipitation over
the upper and lower RRB during the future periods under the
both RCP4.5 and RCP8.5. It was noted that the extreme
monthly precipitation would increase under both scenarios
(Fig. 11). Under RCP4.5, the upper RRB would have 29,
43, and 67% increase in extreme monthly precipitation during
2020s, 2050s, and 2080s, respectively. The lower RRB would
have 2% decrease and 21 and 58% increase in extrememonth-
ly precipitation during 2020s, 2050s, and 2080s, respectively,
as shown in Fig. 11. Under RCP8.5, the results show larger
increase in extreme monthly precipitation in upper and lower
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RRB, with 43, 57, and 104% increase in extreme monthly
precipitation during 2020s, 2050s, and 2080s, respectively,
in the upper RRB and 17, 21, and 51% increase in extreme
monthly precipitation during 2020s, 2050s, and 2080s, re-
spectively, in lower RRB. Overall, upper RRB which covers
mountainous regions would expect most robust change in ex-
treme monthly precipitation compared to the lower RRB
which covers mid land and coastal region.

4.4 Precipitation trend analysis

Mann-Kendall trend test was performed on the annual and
seasonal precipitation in upper and lower RRB for the histor-
ical period of 1976 to 2005 and future period of 2011 to 2100.
For the historical period, the upper RRB has significantly
positive trend in the annual precipitation and lower RRB has
significantly negative trend in annual precipitation as shown
in Table 6. For the seasonal analysis, the upper RRB does not

have the significant trend in the seasonal precipitation except
SON, which has significantly positive trend during the histor-
ical period. On other hand, the historical precipitation in the
lower RRB has significant negative trend during all of the
seasons.

For the future period of 2011 to 2100, the annual precipi-
tation has significant positive trend over the RRB under both
of the RCPs; it is demonstrated in Fig. 6 as well, where the
mean annual precipitation is projected to increase significantly
in the future. On seasonal scale, the DJF precipitation has
significant negative trend in the upper RRB under RCP4.5
whilst significant positive trend under RCP8.5. The negative
trend under the RCP4.5 is understandable as this season
projected to higher increase in precipitation during 2020s
compared to the 2050s and 2080s of RCP4.5. The lower
RRB has significant positive trend during DJF under both of
the RCPs. In MAM, the upper RRB has significant positive
trend in the future under both RCPs and in the lower RRB,
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significant positive trend under RCP4.5, and positive but in-
significant under RCP8.5. The JJA precipitation has signifi-
cant positive trend in the whole RRB (Table 6) and it can be
seen in Fig. 9, where the precipitation is projected to increase
significantly in the three future periods. As the SON precipi-
tation is projected to be little changed in future (up to 5%), the
trend analysis also asserts that there is no significant trend in
future precipitation during this season, except in lower RRB,
where it has significant positive trend under RCP4.5. Overall,
the RRB would be expecting significant increase in future
precipitation under both of the RCPs.

4.5 Further discussion

Projection of variability in precipitation over the RRB indi-
cates that there will be increase in annual precipitation under
both future climate scenarios. However, RCP8.5 shows larger

increase in annual precipitation compared to RCP4.5.
The similar projection exhibited by MetMalaysia (2009),
which compared the period of (2001–2099) with baseline pe-
riod of (1991–1999) over the whole Malaysia. Amin et al.
(2016) also projected the future precipitation on several river
basins in Sabah and Sarawak and noted increase in precipita-
tion over RRB under the future climate when compared
with the present day climate. The results of this study were
also supported by the conclusion of several recent studied
conducted by (Hsu et al. 2012; Kitoh et al. 2013; Lee
and Wang 2012; Wang et al. 2013), which exhibit notable
increase in global monsoon precipitat ion due to
changing climate during the twenty-first century. Kitoh et al.
(2013) compared future projections of global monsoon under
RCP4.5 and RCP8.5 scenarios and noted that under RCP8.5,
global monsoon has larger and more robust response to
atmospheric warming. Taylor et al. (2012) also assessed the
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Fig. 11 Percentage (%) changes in extreme monthly precipitation over RRB; comparison of extreme monthly precipitation under future climate (2020s,
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CMIP5 models under RCPs and noted that the extreme pre-
cipitation event will be more frequent in the tropical regions
by the end of this century.

Under present day climate of SEA, the northeast monsoon
starts in October and continues until March and southwest
monsoon starts from late May and continue until September.
However, the RRB receives heavy precipitation even during
the intermonsoon period of April and May. Under projected
future climate, it was expected that the RRB would receive
more precipitation duringMAM. There is limited literature on
how this synoptic phenomenon relate to local climate and
there is a need to study the intermonsoon physical phenome-
non in this region. During JJA, RRB is expected to have more
southwest moonsoon rainfalls over the catchment under the
future periods; however, under the present day climate, this
season receives the lowest monthly precipitation over the
RRB. It will benefit the hydropower reservoirs in the river
basin as it will provide the water security to the reservoirs
during these lowest inflow months. The upper RRB lies in
the high mountainous region and lower RRB covers midland
and coastal areas; most of the inhabitants settled in the lower
RRB and are vulnerable to the potential flood risk in future.
Therefore, potential increase in maximum monthly precipita-
tion caution the water resource planners to workout insightful
action plan on the flood risk management and early warning
system for the RRB.

5 Conclusions

During the evaluation of twenty GCMs over the RRB,
ACCESS1.0, ACCESS1.3, and GFDL-ESM2M were the
most suitable GCMs to be used for the future precipitation
projection over the RRB. This study also concludes that the
annual precipitation over the RRB expected to increase over
the river basin under RCP4.5 and RCP8.5. Similar trend is
projected for the seasonal precipitation, especially during the
MAM, when the increase in precipitation is more robust for
both scenarios. Borneo is the largest island in Asia and it has
some of the largest river basins in the region such as Kapuas
River Basin in West Kalimantan, Barito River Basin in South
Kalimantan, Kayan River Basin in North Kalimantan, and
RRB in Sarawak. This study will be useful to assess the cli-
mate resilience in these major river basins of Borneo.
However, to illuminate the capability to simulate precipitation
over these river basins, there is also a need to extend GCMs
evaluation on a larger area, i.e. over the whole Borneo.
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